
40 The Delphi Magazine Issue 26

Extending Web Solution Builder
By Chad Z Hower

Web Solution Builder (previ-
ously codenamed Portcul-

lis/IAG) is a RAD web application
development tool for Delphi and
C++Builder. It allows the developer
to work in a manner consistent
with standard Delphi programs.
(Web Solution Builder is available
for Delphi 2/3 and C++ Builder,
from here I’ll simply refer to them
collectively as “Delphi”).

While Web Solution Builder can
generate and use Java, ActiveX and
JavaScript, it does not require any
of these and will not use any of
them in the default configuration. It
converts all Delphi forms to HTML
and transparently interprets the
CGI, ISAPI, NSAPI or WinCGI calls
for the programmer. The program-
mer communicates with a Delphi
form as s/he would normally and
only has to program and debug
Delphi: no coding of CGI, ISAPI,
NSAPI, WinCGI or HTML is
required.

There are two editions of Web
Solution Builder: Developer and
Enterprise. The main differences
between them are scalability and
security. Enterprise can be scaled
to multiple machines with true
dynamic load balancing, and can
be completely deployed behind a
firewall (while still accessible from
the outside), with the web server in
front of the firewall, thus securing

the application. With Developer,
the application must reside on the
same machine as the web server.

This article will not attempt to
cover Web Solution Builder itself.
Web Solution Builder has been
designed to be completely extensi-
ble so that third party vendors and
individual users may create their
own components and extensions,
or add support for their existing
Delphi components. This article
will cover techniques to do this.
Web Solution Builder contains
many APIs, however the one that
we will be discussing is called the
Drawbridge API.

I will show that Web Solution
Builder allows you to do such tasks
as take a Delphi form (Figure 1)
and turn it into a Web application
merely by running it (Figure 2) as
well as show you how to extend
this amazing tool and even write
your own new components.

At Work On The Web
When a Web Solution Builder appli-
cation is developed, each form
contains one or more TIAG_Regions.
A region corresponds to an HTML
page. Normally only one per form
is used, but with frames and tabs,
multiple forms are necessary.
Every control that is to be dis-
played in the browser must be put
onto the region. Each time a

specific region is requested, the
positions of each control, and their
visible property will determine
how they are rendered into HTML.

Drawbridge Extension Types
There are three ways to create
your own components for use with
Web Solution Builder. Firstly, you
can register an HTML Writer. This
is similar to other product offer-
ings: you directly generate all the
HTML.

Secondly, you can inherit from
TIAG_Base “Placeholders”. This is a
method which should be used
when you want to provide HTML
functionality in the RAD environ-
ment, but not based on an existing
Delphi control.

Lastly, you can use the Extension
API to extend an existing Delphi
Control. This method should be
used when you wish to add sup-
port for a Delphi control which
already exists. Collectively these
methods are referred to as the
Drawbridge API.

Registering An HTML Writer
This is useful for small functions,
porting code from other products,
or porting existing ISAPI, NSAPI or
CGI code. This functionality was
finalized in version 1.008. HTML.

➤ Figure 1 (left) Figure 2 (right)

October 1997 The Delphi Magazine 41

To register an HTML writer you
need to call the function Register-
IAGHTMLHook. Its declaration is
shown in Figure 3.

Each time the object specified in
psForm is requested, the procedure
specified in proc will be called. The
parameters that will be passed are
the objc item and the form name.
This allows for multiple writers to
share the same writer procedure.

Once the procedure has been
called, you can use Web Solution
Builder routines such as WriteHTML,
ServeData or DirectTo, or even
write directly to a stream. These
methods are covered in the Web
Solution Builder documentation,
so we will not cover them in detail
but here is a quick summary.
WriteHTML accepts a string, and
allows you to incrementally output
HTML. ServeData allows you to
progmatically serve up Web Solu-
tion Builder forms or other regis-
tered writers. DirectTo allows you
to serve up static HTML contained
in a file and Stream allows you to
write HTML directly to a stream.

Now we will construct a simple
example. Let’s register a writer
which simply outputs the time and
date. First, let’s create the writer
procedure, see Listing 1.

WriteHTML is a method of iagin,
which is a global information
object in Web Solution Builder. We
use this routine to write our HTML.
In this example, it is very straight
forward. We write the minimum
header, followed by the actual text
we want to display. Now we need to
register the writer:

RegisterIAGHTMLHook(‘Sample’,
WriterSample, nil);

This call should be made in the
DPR file, after the Portcullis_Init.
The complete source is shown in
Listing 2. Figure 4 shows what our
final output looks like in the
browser.

Inheriting From
TIAG_Base: “Placeholders”
TIAG_Base is inherited from
TGraphicControl, and only renders
itself graphically at design time. At
run time, TIAG_Base will render to
HTML only, and will not waste

procedure RegisterIAGHTMLHook(const psName: String;
proc: TProcHTMLHook; objc: TObject);

psName: The form name that you wish assign to this hook. This name
is used in the form parameter of the URL to reference this routine.

proc: The procedure that will be called when the writer is requested
and is of type TProcHTMLHook.

ProcHTMLHook = procedure(objc: TObject; const psFormName:
String);

objc: User definable and not used by Web Solution Builder. This has
similar functionality to the Tagproperty of Delphi components. If you
do not wish to take advantage of this parameter, pass nil.

➤ Figure 3

resources or time generating a
graphical image on the form. Place-
holders are also read only, and
currently cannot accept input. In a
future release they will be
enhanced to allow input.

The design time image is not
critical nor required. The control is
utilized by placing it on a form and
sizing it appropriately for its
output. Thus, it holds a place for

Procedure WriterSample(objc: TObject; const psFormName: String);
Begin
with iagin do begin
WriteHTML('<HTML><BODY>');
WriteHTML('The time is: ' + FormatDateTime('', now));

end;
end;

➤ Listing 1

the output, thes are referred to as
Placeholder Controls.

This is the best method of creat-
ing new controls because they are
designed to be as lightweight and
fast as possible. Placeholders are
also ideal for components which
do not have sensible counterparts
as Delphi controls. For example,
bulleted lists are a standard part of
HTML, however there are no

writer_Sample.pas
unit writer_sample;
interface
Procedure WriterSample(objc: TObject; const psFormName: String);
implementation
Uses HTMLer, IAG_Server_Info, SysUtils;
Procedure WriterSample;
begin
with iagin do begin
WriteHTML('<HTML><BODY>');
WriteHTML('The time is: ' + FormatDateTime('', now));
end;

end;
end;

Writer.dpr
program writer;
uses
Forms, htmler, IAG_Server_Info,
main in 'main.pas' {formMain},
writer_sample in 'writer_sample.pas';

{$R *.RES}
begin
Application.Initialize;
Portcullis_Init;
RegisterIAGHTMLHook('Sample', WriterSample, nil);
Application.CreateForm(TformMain, formMain);
{Every Web Solution Builder App needs at least one form, this is a dummy form}
Application.Run;

end.

➤ Listing 2

42 The Delphi Magazine Issue 26

TIAG_Base = class(TGraphicControl)
protected
property Font: Tfont read Ffont write SetFont;
property FontSize: integer read FiFontSize write FiFontSize;
{ 0 = Default Font Size - Do no font output
These are here if you want to publish these. It will be your responsibility
to render their attributes if you do publish these }

procedure ClearRect;
{ Can be called in DesignPaint. Will clear area and fill with parent color }

Public
Property Text: String write SetText;
{ Do not use the text property, it conflicts with the inherited one. This is
used to issue an exception if you try to use it }

Procedure DesignPaint; Virtual;
{ Since these controls only paint at design time, override this method to draw
it. This method will only be called at design time, so you need not worry
about this. If you call then inherited DesignPaint it will clear the region
and fill it with clWindow. You are not required to call the inherited
DesignPaint. To output, merely use the control's canvas }

Function WriteSelf: string; Virtual; Abstract;
{ This function will be called when it is the controls turn to write itself
out. It must return the HTML representation in the result. The control will
be given the width and height specified in the Width and Height properties.
The HTML returned should not exceed this size when rendered. If size varies,
you should make the control bigger than the output will be }

Published
property Visible;
{ Controls whether or not control is rendered to HTML.
WriteSelf will not be called if false, however a place will be rendered in
the final output where the control resides }

➤ Listing 3

Type
TIAG_List = class(TIAG_Base)
private
protected
procedure DesignPaint; override;

public
Function WriteSelf: string; Override;

published
end;

➤ Listing 4

function TIAG_List.WriteSelf;
var i: Integer;
begin
if Numbered then result := ''
else result := ';

for I := 0 to Items.Count - 1 do
AppendStr(result, '' + Items[i] + '' + #13 + #10);

if Numbered then AppendStr(result, '')
else AppendStr(result, ');

end;

➤ Listing 5

➤ Figure 4

controls in Delphi corresponding
to this functionality.

Let’s take a quick overview of
TIAG_Base, since this is the base for
all placeholder controls. The
import ant declarations of
TIAG_Base are shown in Listing 3.

The minimal implementation of
a placeholder control requires the
following steps. First, inherit a new
class from TIAG_Base; then, over-
ride and implement the WriteSelf
function and finally, register the
control to the Delphi palette.

Let’s build a simple example
(Listing 4). We mentioned earlier
that bulleted lists have no corre-
sponding Delphi control. We will
build a bulleted list placeholder
control for our example. The first
step is to create a new unit, and
inherit from TIAG_Base. We will also
override the DesignPaint and the
WriteSelf methods.

Before we go any further, we
need to add some properties so
that we can describe the features
of an HTML list. These properties
are: the items in the list and Bul-
letedor Numbered. I will add them to
TIAG_List as Items (TStringList)
and Numbered (Boolean). I will not
cover adding these properties and
their associated code as they
consist of standard Delphi tech-
niques. The complete source code
is available in Listing 7. We still
have to implement the two meth-
ods we overrode in the beginning,
WriteSelf and DesignPaint.

WriteSelf
In the WriteSelf function (Listing
5) the task is to generate the HTML
for the control, and return it as the
result. The output is dynamic
based on the properties that the
user has set. In the above example
we first test to see if they have
selected a numbered list or a
bulleted list. Based on the prop-
erty of Numbered, we set the result
to (The HTML tag to begin a
numbered list) or (The HTML
tag to begin a un-numbered list (ie
bulleted list)). From there on, we
will use the AppendStr procedure
on the Result variable to continue
to build the complete HTML
output.

Tip: AppendStr is much more
efficient than using string concate-
nation on an individual variable.
For example: AppendStr(Result,
‘More’) is better than Result :=
Result + ‘more’.

After we have determined the
list type, we will then write out
each individual item. For each item
we will prefix the text with
(HTML for begin list item) and
suffix it with (HTML for end
list item). To make the output read-
able (ie if you select View | Source
in your browser) for debugging

October 1997 The Delphi Magazine 43

purposes, we will also suffix each
item with an end of line sequence
(CR + LF). Finally, we need to termi-
nate the list. This is done by using
the slash form of the begin tag that
we used earlier. Thus we again test
to see if it is numbered or bulleted,
and add either or .

DesignPaint
DesignPaint is not required to be
implemented, however it gives the
programmer a better visualization
of what the form will look like at
run time. It is generally a good idea
to implement DesignPaint, how-
ever, if you do not, the default
DesignPaint will fill the space of the
control. The output of DesignPaint
need not look exactly like the
actual HTML will (besides, HTML

procedure TIAG_List.DesignPaint;
var i: Integer;

s: string;
begin
inherited DesignPaint;
with Canvas do begin
for i := 0 to Items.Count - 1 do begin
if Numbered then s := IntToStr(I + 1) + ') + Items[i]);
else s := '*') + Items[i];

TextOut(0, i * TextHeight('Ty'), s);
end;
FrameRect(Rect(0, 0, Width - 1, Height - 1));

end;
end;

➤ Listing 6

➤ Figure 5 (left)
Figure 6 (right)

➤ Listing 7

Unit IAG_List;
interface
Uses HTMLer, SysUtils, Classes;
Type
TIAG_List = class(TIAG_Base)
private
FbNumbered: Boolean;
FslstItems: TStringList;
procedure SetItems(Value: TStringList);

protected
procedure DesignPaint; override;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
Function WriteSelf: string; Override;

published
property Items: TStringList
read FslstItems write SetItems;

property Numbered: Boolean
read FbNumbered write FbNumbered;

end;
procedure Register;
implementation
procedure Register;
begin
RegisterComponents('IAG Placeholders', [TIAG_List]);

end;
constructor TIAG_List.Create;
begin
inherited Create(AOwner);
FslstItems := TStringList.Create;
Height := 24;
Width := 116;

end;
destructor TIAG_List.Destroy;
begin
FslstItems.Free;
inherited Destroy;

end;
procedure TIAG_List.SetItems;
begin
FslstItems.Assign(Value);
Invalidate;

end;
function TIAG_List.WriteSelf;
var i: Integer;
begin
if Numbered then result := ''
else result := ';

for I := 0 to Items.Count - 1 do
AppendStr(result, ''+Items[i]+''+#13+#10);

if Numbered then AppendStr(result, '')
else AppendStr(result, ');

end;
procedure TIAG_List.DesignPaint;
var i: Integer;
begin
inherited DesignPaint;
with Canvas do begin
for i := 0 to Items.Count - 1 do
TextOut(0, i * TextHeight('Ty'),
sIIF(Numbered, IntToStr(i)+ ') ', '*') + Items[i]);

FrameRect(Rect(0, 0, Width - 1, Height - 1));
end;

end;

looks different in different brows-
ers), but it should provide a decent
representation.

In our DesignPaint we first call
the inherited DesignPaint to pro-
vide a textured background. Then
we iterate through the items and
create a string with either a
number prefix, or an asterisk (our
representation of a bullet), and use
TextOut to write it on the controls
Canvas. Finally, we use FrameRect
to draw a border on the control.
Figure 5 shows what TIAG_List

looks like at design time and Figure
6 shows what it looks like in the
browser. If we do a View | Source,
this is what we see (excerpt of
section):

Dogs
Cats
Elephants

Completed TIAG_List
Our control is now complete! All
that remains is to register it and

44 The Delphi Magazine Issue 26

compile it into the component pal-
ette. Again, since these are stan-
dard Delphi techniques, I will not
cover this here. The complete
source is available in Listing 7.

Descending From
TIAG_Base Descendants
In addition to inheriting from
TIAG_Base, you may wish to inherit

TiagControl = class
clas: TClass;
{ Class of control to register }
OutputType: TiagOutputType;
{ Type of output which control renders
outpHTML: Outputs raw HTML, outpImageBitmap: Outputs a Bitmap }

ImageSource: TiagImageSource;
{ imgsNone: Is not an Image
imgsHandle: Image has a Handle
Return handle in .Bitmap

imgsFile: Image is in a file
.FileName will contain a filename, save the bitmap to this }

ControlType: TiagControlType;
{ Type of control
ctypDisplay: Display only. Does not accept input.
CtypInput: Not yet supported, ctypSubmit: Not yet supported }

AutoLayout: Boolean;
{ If true, control will be positioned in page and given room by its width and
height. If false control will be vertically placed only if Default is True }

ProcRender: TProcRender;
{ This procedure is called when the control needs to render itself.
Page: This is the TIAG_Region which is being generated.
ctrl: This is the instance of the control which is requested for rendering
strm: if not nil, the control must send its output to this stream
sFile: if strm is nil control should write its output to filename specified.
* strm and File are mutually exclusive, if strm is nil, then sFile will
contain a name. If strm is not nil, then FileName should be ignored.
* For controls of type outpHTML, strm will never be nil }

ProcSetData: TProcSetData;
ProcSubmit: TProcSubmit;
{ These two pointers are for Submit and interactive controls. This
functionality will be completed in a future release of Web Solution Builder }

constructor Create; Dynamic;
{ Standard Delphi Constructor }

end;

Supporting Types for the Extension API
TiagOutputType = (outpHTML, outpImageBitmap);
TiagImageSource = (imgsNone, imgsHandle, imgsFile);
TiagControlType = (ctypDisplay, ctypInput, ctypSubmit);
TProcRender =
Procedure(page: TIAG_Region; ctrl: Tcontrol; var rinfo: TRenderInfo);

➤ Listing 8

iagc := TiagControl.Create; { Create new instance of TiagControl for register routine }
with iagc do begin
clas := Timage; { Tell it that we are registering TImage }
OutputType := outpImageBitmap; { TImage outputs a bitmap }
ImageSource := imgsHandle; { render procedure will pass back a Bitmap Handle }
ControlType := ctypDisplay; { It is a display control }
ProcRender := RenderImage; { This is a pointer to the render procedure. This is
the procedure which will return the bitmap handle }

ProcSetData := nil;
ProcSubmit := nil; { Procedure is Dispaly only, these procedures are not used
for Display Controls }

RegisterIAGControl(iagc); { Register the control. This step passes the
TiagControl instance to the Drawbridge Extension API and allows it to be uses
in a Web Solution Builder Application }

end;

➤ Listing 9

TRenderInfo = record
Bitmap: Hbitmap;
{ outpImageBitmap : imagsHandle, Used to return a bitmap handle }
FileName: String;
{ outpImageBitmap : imagsFile, procedure need to write to filename that is
passed in FileName }

strm: Tstream; { outpHTML outputs to stream }
end;

➤ Listing 10

procedure RenderImage;
begin
rinfo.Bitmap := TImage(ctrl).
Picture.Bitmap.Handle;
{ Return the bitmap handle
to the TImage}

end;

➤ Listing 11

from descendants of TIAG_Base. An
example of this would be to inherit
from TIAG_Applet and add proper-
ties to control specific functional-
ity for a specific Java applet.

Extending Delphi Controls
An extension to a Delphi control
can be implemented without the
need for source code of the control

being supported. This method
should be used when the control
already contains a great deal of
functionality that could not be
easily rewritten or encapsulated,
such as charts and grid.

To extend an existing control,
you need to describe the control,
provide input/output, and register
it with Web Solution Builder. For
our example, we will extend the
TImage and TDBImage to be
supported. These controls are
already supported, but are inter-
nally done the same as you see
here, through the Drawbridge
Extension API.

The first step is to describe the
control. This is done by creating an
instance of TiagControl, setting it’s
properties, and finally registering
it. TiagControl is shown in Listing
8. Let’s take the first step and
create the TiagControl object for
TImage (Listing 9).

The registering of the control
should be done in the initialization
section of the unit. When you need
support for a control in an applica-
tion, be sure to add the unit in a
uses clause in the application
somewhere, otherwise the initiali-
zation section will never be called,
and the control will not be
supported.

Render Procedure
The second step is to define the
output. This is done by creating a
render procedure. The render
procedure is specified in the Tiag-
Control. The render procedure
prototype is as follows:

TProcRender = Procedure(page:
TIAG_Region; ctrl: TControl;
var rinfo: TRenderInfo);

You will need to create a proce-
dure with a compatible parameter
list. When the render procedure is
called, page will specify the region
which is doing the rendering and

46 The Delphi Magazine Issue 26

control will specify the instance of
the control which needs to be ren-
dered. Rinfo is an input/output
class which is passed by address. A
class is used so that the TProcRen-
der can be expanded in functional-
ity while maintaining backward
compatibility with all versions of
Drawbridge extensions. Rinfo may
contain information which you will
need, to perform the render, and is
also used to return data from the
Render procedure. Rinfo is of type
TRenderInfo and TRenderInfo is
defined in Listing 10.

We already specified Render-
Image in step one as our render
procedure, so we merely need to
write a render procedure with this
name now (Listing 11). The com-
plete listing for IAG_Images is
shown in Listing 12.

Chad Z. Hower (aka Dr.Pepper,
czhower@shoresoft.com) is a
Principal Development Consult-
ant at Shoreline Software. In his
spare time, Chad likes to program.
He has the license plates Delphi2
and CPPBldr on his vehicles!

Unit iag_images;
Interface
Uses
Controls, Drawbridge, HTMLer;

procedure RenderDBImage(page: TIAG_Region; ctrl: TControl;
var rinfo: TRenderInfo);

procedure RenderImage(page: TIAG_Region; ctrl: TControl;
var rinfo: TRenderInfo);

{ Multiple controls can share same Render Procedure but would need to detect
class of ctrl. Normally it’s easier to use unique Render procs }

Implementation
Uses DBCtrls, ExtCtrls;
procedure RenderDBImage;
begin
rinfo.Bitmap := TDBImage(ctrl).Picture.Bitmap.Handle; { handle to TDBImage }

end;
procedure RenderImage;
begin
rinfo.Bitmap := TImage(ctrl).Picture.Bitmap.Handle; { handle to Timage }

end;
var iagc: TiagControl;
initialization
iagc := TiagControl.Create;
with iagc do begin
clas := TDBImage; { Class that we are registering }
OutputType := outpImageBitmap; { It outputs a bitmap }
ImageSource := imgsHandle; { render procedure passed back a Bitmap Handle }
ControlType := ctypDisplay; { It is a display control }
ProcRender := RenderDBImage; { Render procedure }
ProcSetData := nil; { Dispaly only, this proc not used for Display Controls }
ProcSubmit := nil; { Display only, this proc not used for Display Controls }
RegisterIAGControl(iagc); { Register the control }

end;
{ ... See comments above... }
iagc := TiagControl.Create;
with iagc do begin
clas := Timage;
OutputType := outpImageBitmap;
ImageSource := imgsHandle;
ControlType := ctypDisplay;
ProcRender := RenderImage;
ProcSetData := nil;
ProcSubmit := nil;
RegisterIAGControl(iagc);

end;
end.

➤ Listing 12

	At Work On The Web
	Drawbridge Extension Types
	Registering An HTML Writer
	Inheriting From TIAG_Base: “Placeholders”
	WriteSelf
	DesignPaint
	Completed TIAG_List
	Descending From TIAG_Base Descendants
	Extending Delphi Controls
	Render Procedure

